Predicting Gate Down Violations at Crossings

Dr. Robert A. Rescot, P.E.

Assistant Professor of Civil Engineering

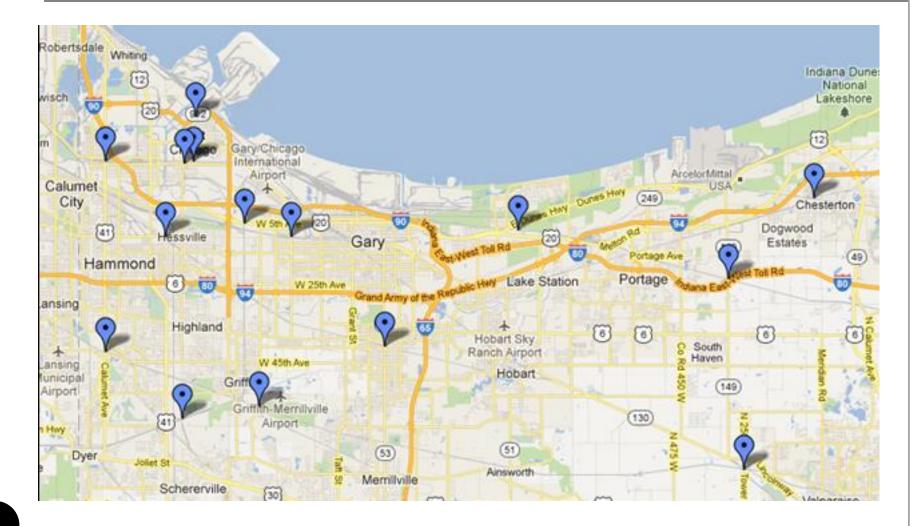
CALUMET

Paper #GLXS2014-1134

About Northwest Indiana

- Heavy rail dependent industries
 - One of the largest Steel Production regions in US
 - Two large Oil refineries
 - Great lakes maritime shipping of raw materials
- Many Chicago bound commuters
- Major eastern gateway into Chicago for westbound railroad freight

NWI Rail Vision Working Group


- Representatives of the rail industry, local governments, INDOT, economic development, academics
- Charged with assessing region's at-grade railroad crossings
 - Safety improvements
 - Economic and environmental impacts
 - Provide regional coordination for acquiring funding
 - Implement NIRPC's 2040 regional plan

Limited Resources Require More Data for Better Decisions

21 Crossing Sites

Data Collection

Data Summary

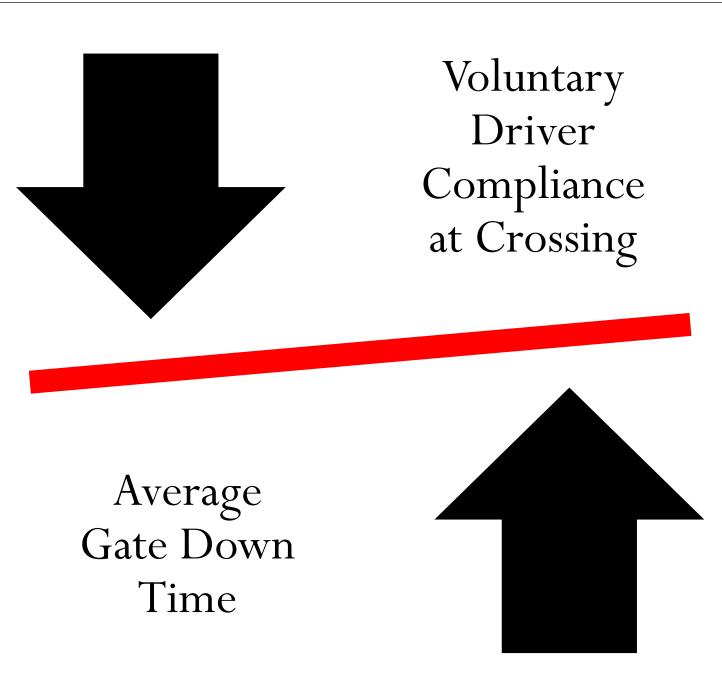
- 24 hours 14 minutes of data collected over two spring seasons (2012, 2013)
- 21 crossings observed All with twin gates and lights
- Data only collected during clear weather with dry pavement
- 229 Ticketable violations observed
- 0 Citations issued (No law enforcement present during data collection at all sites)

Sample of Issues

Data Analysis

- Additional data collected for each site
 - AADT (MPO/INDOT data)
 - Trains per day (FRA data)
 - Width of pavement
 - Number of lanes across tracks
 - Number of tracks
 - Flag for yard proximity if applicable
 - Advanced warning times tabulated from video
 - Post warning times tabulated from video

Types of Violations Identified


- Pre-Train Violations
 - Vehicles crossing tracks during moving gates
 - Vehicles crossing tracks around down gates
- Post-Train Violations (Potential 2nd Train issue at several locations)
 - Vehicles crossing tracks during moving gates
 - Vehicles crossing tracks around down gates

Result of Statistical Analysis

- Multivariate regression preformed
- Variables were added and removed checking p-values
- Interaction between pairs of variables checked using p-values
- Only a variable was statistically significant with 95% confidence
- Resulting Model:
 - Predicted number of violations per crossing event = 0.0102 * Advanced Warning Time in Seconds (p-value 0.002)
 - 0.306 Violations expected per 30 seconds of advanced warning time
 - <u>1 violation expected for every 98 seconds</u> of advanced warning time

Advanced Warning Time

- Observations
 - Min: 25 seconds
 - Max: 147 seconds
- Standard Deviation Per Crossing
 - Min: 27.3 seconds
 - Max: 50.1 seconds

Example #2

Contributing Issues

- Mix of rail traffic operations at varying speeds
 - Switching operations
 - Siding entrances
 - Industrial
 - Through freight
 - Through passenger
- Driver "familiarity" with crossing
- Phasing of traffic single following preemption call

Gate Down Time Issues

- Railroad switching operations can create extended closures
- False positive gate activations
- Extended advanced warning time before train arrives
- Driver comfort / "knowledge" of crossing
- Mix of passenger and freight rail operations in region
- High(er) speed rail requirements

This Requires a team effort

Solutions

- Education
 - Drivers
 - Pedestrians
 - Children

- Advanced warning systems able to detect approach speed and acceleration to provide uniform warning time for all trains on all tracks
- Median Barriers
- 4 quadrant gates
- Enforcement
- Photo enforcement

Thank You!

CONNECTIO

ARBOR

č

Questions?

CALUMET

Robert A. Rescot, Ph.D., P.E. 219-989-3147 robert.rescot@purduecal.edu

