Measuring Concrete Crosstie Rail Seat Pressure Distribution with Matrix Based Tactile Surface Sensors (MBTSS)

Christopher T. Rapp, Marcus S. Dersch, J. Riley Edwards, and Christopher P.L. Barkan
University of Illinois at Urbana-Champaign

Jose Mediavilla, Amsted RPS
Brent Wilson, Amsted Rail
Outline

• Overview of FRA Concrete Crosstie and Fastening System BAA
• Current Objectives of Experimentation with MBTSS
• Pulsating Load Testing Machine (PLTM) at UIUC
• Sensor Layout and Data Representation
• Experimentation at UIUC
 – Rail Pad Test
 – Fastening Clip Test
• Conclusions
• Future Work
• Acknowledgements
FRA Concrete Crosstie and Fastening System BAA

- **Program Objectives**
 - Conduct comprehensive international literature review and state-of-the-art assessment for design and performance
 - Conduct experimental laboratory and field testing, leading to improved recommended practices for design
 - Provide mechanistic design recommendations for concrete crossties and fastening system design in the US

- **Select Program Deliverables**
 - Improved mechanistic design recommendations for concrete crossties and fastening systems in the US
 - Improved safety due to increased strength of critical infrastructure components
 - Centralized knowledge and document depository for concrete crossties and fastening systems
FRA Tie and Fastener Program Structure

Inputs
- Comprehensive Literature Review
- International Tie and Fastening System Survey
- Loading Regime (Input) Study
- Rail Seat Load Calculation Methodologies
- Involvement of Industry Experts

Outputs/Deliverables
- Data Collection
- Document Depository
- Groundwork for Mechanistic Design
- International Survey Report
- Load Path Map
- Parametric Analysis
- State of Practice Report
- Validated Tie and Fastening System Model

Outputs/Deliverables
- Modeling
- Laboratory Study
- Field Study

Improved Recommended Practices
Current Objectives of Experimentation with MBTSS

- Measure magnitude and distribution of pressure at the concrete crosstie rail seat
- Gain better understanding of how load from wheel/rail interface is transferred to rail seat
- Compare pressure distribution on rail seats
 - Under various loading scenarios
 - Under various fastening systems
- Identify regions of high pressure and quantify peak values
Pulsating Load Testing Machine (PLTM)

- Housed at the Advanced Transportation and Research Engineering Laboratory (ATREL)
- Owned by Amsted RPS
- Used for Full Scale Concrete Tie and Fastening System Testing
- Following AREMA Test 6 – Wear and Abrasion
- Three 35,000 lb. actuators: two vertical and one horizontal
 - Ability to simulate various Lateral/Vertical (L/V) ratios
Pulsating Load Testing Machine (PLTM)
MBTSS Placement (Profile)

- Pad Assembly (0.007 in.)
- BoPET (0.007 in.)
- PTFE (0.006 in.)
- MBTSS (0.004 in.)

MBTSS Layers

Data Acquisition Handle
MBTSS Placement (Plan)
Visual Representation of Data

- Data visually displayed as color 2D or 3D images
- Force and pressure are calculated at each sensing point
- Standard color scale applied to all data

Sample 2D MBTSS Output

Sample 3D MBTSS Output
Experimentation at UIUC

• Laboratory experimentation to measure effect of \(\frac{L}{V} \) ratio on pressure distribution in the rail seat varying:
 – Rail pad assembly
 – Fastening clip

• Attempt to simulate range of field loading inputs in the laboratory using the PLTM
Rail Pad Test

- **Objective:** gain understanding of effect of pad modulus on rail seat pressure distribution
- Bound the experiment by using low and high modulus pads
- Two rail pad types with same dimensions and geometry
 - Thermoplastic Vulcanizate (TPV - lower modulus)
 - Medium-Density Polyethylene (MDPE – higher modulus)
- Concrete rail seat and fastening system held constant
- Identical loading conditions
 - 32.5 kip vertical load
 - Lateral load varies based on respective L/V ratio

<table>
<thead>
<tr>
<th>Material</th>
<th>Shore Hardness</th>
<th>Flexural Modulus, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPV</td>
<td>86 (A)</td>
<td>15,000*</td>
</tr>
<tr>
<td>MDPE</td>
<td>60 (D)</td>
<td>120,000</td>
</tr>
</tbody>
</table>

*Approximate flexural modulus based on a TPV with a similar Shore Hardness of 87A
Rail Pad Test Results

<table>
<thead>
<tr>
<th>L/V Ratio</th>
<th>0.25</th>
<th>0.44</th>
<th>0.48</th>
<th>0.52</th>
<th>0.56</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Area (in²)</td>
<td>28.8</td>
<td>27.9</td>
<td>27.3</td>
<td>25.8</td>
<td>24.0</td>
<td>21.3</td>
</tr>
<tr>
<td>% of Rail Seat</td>
<td>85</td>
<td>82</td>
<td>80</td>
<td>76</td>
<td>71</td>
<td>63</td>
</tr>
<tr>
<td>Peak Pressure (psi)</td>
<td>2,139</td>
<td>2,573</td>
<td>2,800</td>
<td>2,925</td>
<td>3,162</td>
<td>3,400</td>
</tr>
</tbody>
</table>

TPV

- **Contact Area (in²)**: 20.1
- % of Rail Seat: 59
- Peak Pressure (psi): 3,213

MDPE

- **Contact Area (in²)**: 19.3
- % of Rail Seat: 57
- Peak Pressure (psi): 3,469
Average Pressure Distribution for TPV Rail Pad

Pressure (psi) vs. Distance from Gauge Edge of Sensor on Rail Seat (in.).

Legend:
- L/V Ratio: 0.60 (red), 0.56 (blue), 0.52 (orange), 0.48 (green), 0.44 (cyan), 0.25 (magenta).

Gauge: FIELD

Pressure (psi) vs. Distance from Gauge Edge of Sensor on Rail Seat (in.).

Legend:
- L/V Ratio: 0.60 (red), 0.56 (blue), 0.52 (orange), 0.48 (green), 0.44 (cyan), 0.25 (magenta).

Gauge: FIELD
Average Pressure Distribution for MDPE Rail Pad

- Pressure (psi) on the y-axis.
- Distance from Gauge Edge of Sensor on Rail Seat (in.) on the x-axis.

Legend:
- L/V Ratio
 - 0.60: Red
 - 0.56: Blue
 - 0.52: Orange
 - 0.48: Green
 - 0.44: Cyan
 - 0.25: Magenta

Gauge vs. Field comparison.
Rail Pad Test Results (cont.)

- **Two-Part Pad Assembly**
 - Poly Pad
 - Nylon 6-6 Abrasion Frame

- **32.5 kip vertical load**

- **Lateral load varies based on respective L/V ratio**

<table>
<thead>
<tr>
<th>L/V Ratio</th>
<th>Contact Area (in²)</th>
<th>% of Rail Seat</th>
<th>Peak Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>24.9</td>
<td>80</td>
<td>2,550</td>
</tr>
<tr>
<td>0.44</td>
<td>24.0</td>
<td>77</td>
<td>2,821</td>
</tr>
<tr>
<td>0.48</td>
<td>23.9</td>
<td>77</td>
<td>2,877</td>
</tr>
<tr>
<td>0.52</td>
<td>23.9</td>
<td>77</td>
<td>2,990</td>
</tr>
<tr>
<td>0.56</td>
<td>23.4</td>
<td>75</td>
<td>3,201</td>
</tr>
<tr>
<td>0.60</td>
<td>23.4</td>
<td>75</td>
<td>3,325</td>
</tr>
</tbody>
</table>
Average Pressure Distribution for Two-Part Pad Assembly
Rail Pad Comparison at 0.52 L/V

- Load Applied:
 - 32.5 kip vertical
 - 16.9 kip lateral

<table>
<thead>
<tr>
<th></th>
<th>Contact Area (in²)</th>
<th>Peak Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPV</td>
<td>25.8</td>
<td>2,925</td>
</tr>
<tr>
<td>MDPE</td>
<td>19.0</td>
<td>3,721</td>
</tr>
<tr>
<td>Two-Part Pad Assembly</td>
<td>23.9</td>
<td>2,990</td>
</tr>
</tbody>
</table>
Clip Test

- **Objective**: gain preliminary understanding of effect of clip geometry on pressure distribution
- Rail pad material held constant
- Identical loading conditions
 - 32.5 kip vertical load
 - Lateral load varies based on respective L/V ratio

<table>
<thead>
<tr>
<th></th>
<th>Clip A</th>
<th>Clip B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Toe Load, lbs</td>
<td>4,750</td>
<td>5,500</td>
</tr>
<tr>
<td>Spring Rate*, lb/in</td>
<td>8,223</td>
<td>6,286</td>
</tr>
</tbody>
</table>

*Value based on manufacturer’s design toe load at a given deflection
Clip Test Results

Clip A
- **Contact Area (in²)**
 - 0.25: 28.4
 - 0.44: 26.6
 - 0.52: 23.6
 - 0.60: 16.6
- **% of Rail Seat**
 - 0.25: 84%
 - 0.44: 78%
 - 0.52: 70%
 - 0.60: 49%
- **Peak Pressure (psi)**
 - 0.25: 2,188
 - 0.44: 2,327
 - 0.52: 2,872
 - 0.60: 3,809

Clip B
- **Contact Area (in²)**
 - 0.25: 27.6
 - 0.44: 24.5
 - 0.52: 21.0
 - 0.60: 17.2
- **% of Rail Seat**
 - 0.25: 81%
 - 0.44: 72%
 - 0.52: 62%
 - 0.60: 51%
- **Peak Pressure (psi)**
 - 0.25: 2,744
 - 0.44: 3,067
 - 0.52: 3,385
 - 0.60: 4,083

Pressure (psi) Scale
- 0 1000 2000 3000 4000
Average Pressure Distribution for Clip B

Pressure (psi) vs. Distance from Gauge Edge of Sensor on Rail Seat (in.)

L/V Ratio:
- 0.60
- 0.52
- 0.44
- 0.25

Gauge vs. Field Comparison

2012 Annual Conference & Exposition
September 16-19, 2012, Chicago, IL
Conclusions from Testing

• **Effect of L/V Ratio**
 – Lower L/V ratios distribute the pressure over a larger contact area
 – Higher L/V ratios cause a concentration of pressure on the field side of the rail seat
 • Results in higher peak pressures

• **Rail Pad Test**
 – Lower modulus rail pads distribute rail seat loads over a larger contact area
 • Reduces peak pressure values
 • Mitigates highly concentrated loads at this interface
 – Higher modulus rail pads distribute rail seat loads in more highly concentrated areas
 • Possibly leads to localized crushing of the concrete surface
 – Two-Part Pad Assembly
 • Maintains relatively consistent contact area under increasing L/V ratios
 • Peak pressures similar to the lower modulus TPV pad
Conclusions from Testing (cont.)

- **Fastening Clip Test**
 - Design of the clip component of the fastening system affects the shape of the pressure distribution on the rail seat
 - Minimal differences in peak pressures and contact areas of pressure distribution between the two clips tested in the experiment
Future Work with MBTSS

- Field testing at TTC in Pueblo, CO to understand pressure distribution varying track and loading conditions
 - Instrument high and low rail seats of a crosstie to compare varying track geometries
 - Instrument consecutive rail seats to see load transfers between crossties
 - Continue pad modulus testing within bounded experiments
- Continue testing common North American fastening systems
Acknowledgements

• Funding for this research has been provided by the Federal Railway Administration (FRA)
• Industry Partnership and support has been provided by
 – Union Pacific Railroad
 – BNSF Railway
 – National Railway Passenger Corporation (Amtrak)
 – Amsted RPS / Amsted Rail, Inc.
 • Specifically for use of Pulsating Load Testing Machine
 – GIC Ingeniería y Construcción
 – Hanson Professional Services, Inc.
 – CXT Concrete Ties, Inc., LB Foster Company
• UIUC - Marc Killion and Timothy Prunkard
• University of Kentucky - Professor Jerry Rose and graduate students
• Association of American Railroads (AAR) and Transportation Technology Center, Inc. (TTCI)
Questions / Comments

Christopher T. Rapp
Graduate Research Assistant
Rail Transportation and Engineering Center – RailTEC
University of Illinois at Urbana-Champaign
e-mail: ctrapp3@illinois.edu