Investigation of the Mechanics of Rail Seat Deterioration (RSD) and Methods to Improve the Abrasion Resistance of Concrete Sleeper Rail Seats

10th International Heavy Haul Association Conference
New Delhi, India
6 February 2013

Amogh A. Shurpali, Ryan G. Kernes, J. Riley Edwards, David A. Lange, Marcus S. Dersch, and Christopher P.L. Barkan
Outline

• Objectives

• Rail seat deterioration (RSD) background

• Large-scale abrasion test
 – Evaluation of frictional properties

• Small-scale test for abrasion resistance
 – Results

• Conclusions and future work
Objectives

- Understand the mechanics of the most critical failure modes
 - Investigate parameters that affect abrasion mechanism
 - Characterize frictional forces between rail seat and rail pad

- Propose methods of mitigating the critical failure modes
 - Quantify abrasion resistance of various concrete mix designs, curing conditions, and surface treatments
2012 International Survey Results
Criticality of Problems – North American Responses

<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Average Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterioration of concrete material beneath the rail</td>
<td>6.43</td>
</tr>
<tr>
<td>Shoulder/fastening system wear or fatigue</td>
<td>6.38</td>
</tr>
<tr>
<td>Cracking from dynamic loads</td>
<td>4.83</td>
</tr>
<tr>
<td>Derailment damage</td>
<td>4.57</td>
</tr>
<tr>
<td>Cracking from center binding</td>
<td>4.50</td>
</tr>
<tr>
<td>Tamping damage</td>
<td>4.14</td>
</tr>
<tr>
<td>Other (e.g. manufactured defect)</td>
<td>3.57</td>
</tr>
<tr>
<td>Cracking from environmental/chemical degradation</td>
<td>3.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research Topic</th>
<th>Average Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention or repair of rail seat deterioration</td>
<td>3.60</td>
</tr>
<tr>
<td>Fastening system design</td>
<td>3.60</td>
</tr>
<tr>
<td>Materials design</td>
<td>3.00</td>
</tr>
<tr>
<td>Optimize crosstie design</td>
<td>2.80</td>
</tr>
<tr>
<td>Track system design</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Rail Seat Deterioration (RSD)

- Degradation of concrete material under rail and pad
 - Increases maintenance costs
 - Shortens service life

Plan view of deteriorated rail seat

Plan view of concrete sleeper track

Profile view of damaged rail seat
Mechanics of Rail Seat Deterioration

Mechanics of Abrasion

- Abrasion is a progressive failure mechanism that occurs when:
 - Frictional forces act between two surfaces in contact
 - Relative movement occurs
 - Harder surface cuts or ploughs into the softer surface

- Progression of abrasion at the rail seat
 1. Cyclic motion of rail base under wheel loads induces normal and shear forces
 2. Shear forces overcome static friction and the pad slips relative to the concrete
 3. Strain is imparted on concrete matrix
 - Abrasion involves 3-body wear: two interacting surfaces (rail pad assembly and rail seat) and abrasive slurry (water and fines)
Large-Scale Abrasion Test (LSAT)

- Objectives:
 - Isolate abrasion mechanism
 - Maintain representative contact mechanics
 - Understand effect of variables on abrasion rate
 - Load magnitude, displacement, water, sand, friction
 - Establish most abrasive parameters to evaluate rail seat materials and surface treatments

- Test Setup: 1:4 scale
 - Normal force: 13 kN – 44 kN (53 kN – 180 kN rail seat load)
 - Displacement: 2-3 mm
 - 152 mm x 152 mm x 76 mm concrete specimens (>48 MPa)
 - 76 mm x 102 mm x 19 mm stock pad materials
 - Nylon 6/6, polyurethane
 - Contaminates: laboratory sand, water
Large-Scale Abrasion Test Experimental Setup

- Vertical Actuator
- Horizontal Actuator
- Abrasion Pad
- Concrete Specimen
Large-Scale Abrasion Test Experimental Setup

Loading head and concrete specimen fixed to strong floor

Pad material confined to cavity in loading head
Large-Scale Abrasion Test
Sample Results from Deterioration Tests

Concrete abraded with nylon 6/6

After 64,800 cycles,
Average wear depth = 0.028”

Concrete abraded with polyurethane

After 64,800 cycles,
Average wear depth = 0.012”
Large-Scale Abrasion Test

Sample Results from Deterioration Tests

Nylon 6/6 Pad Polyurethane Pad
Effect of Increasing Normal Load on Nylon 6/6
Effect of Increasing Normal Load on Polyurethane

Frictional Coefficient, μ vs Loading Cycles

- 13 kN
- 22 kN
- 44 kN
Small Scale Test for Abrasion Resistance (SSTAR): Test Setup

- In general, similar to other standard abrasion tests
- Consists of a powered rotating steel wheel with 3 lapping rings
 - Lapping rings permitted to rotate about their own axis
 - Vertical load applied using the dead weights
 - Abrasive sand and water dispensed during testing
SSTAR Test Protocol

• Each test can evaluate 3 specimens
• Multiple tests are run to evaluate more than 3 specimens
• Specimen dimensions: 10 cm (diameter), 2.5 cm (thickness)
• Duration: 120 minutes
• Wear depth measurements taken every 20 minutes
• Speed: 60 revolutions per minute
• Abrasive fine: Ottawa 20-30 sand
Experimental Methods of Mitigating Abrasion

- **Mineral Admixtures**
 - Silica fume: 5%, 10%
 - Fly ash: 15%, 30%

- **Curing Condition**
 - Moist
 - Submerged
 - Oven dry
 - Air

- **Fiber Reinforced Concrete (FRC)**
 - Polyurethane
 - Steel

- **Surface Treatments**
 - Epoxy
 - Exposed aggregate
Effect of Mineral Admixtures

- 30% Fly ash
- Control
- 10% Silica fume
- 5% Silica fume
- 15% Fly ash
Effect of Fiber Reinforcement

- 0.5% Poly
- Control
- 0.3% Poly
- 0.5% Steel
- 1% Steel

Wear Depth (millimetres) vs Test Duration (minutes)
Effect of Curing Conditions

- Oven cured
- Air cured
- Moist cured (control)
- Submerged cured
Effect of Surface Treatments

- Epoxy Coating
- Control
- Exposed Aggregate

Wear Depth (millimeters) vs. Test Duration (minutes)
Conclusions

- LSAT:
 - Confirmation of abrasion as a feasible RSD mechanism
 - Shear behavior of pad assembly may impact abrasion
 - Transfer of forces likely affected by coefficient of friction
 - Pad material, normal force, temperature, water/sand
- SSART:
 - Successfully compared 13 approaches to improving abrasion resistance of rail seat through material improvements
 - Improve abrasion resistance of concrete with:
 - Optimal amounts of fly ash
 - Proper curing condition
 - Addition of steel fibers
 - Exposed aggregate
Future Work

• Large-Scale Testing
 – Determining the optimal shear design at each interface of multi-layer rail pads (top, bottom, and between layers) could:
 • Reduce movement at critical interfaces, influence slip
 • Delay the onset of abrasive wear and extend rail seat life
 • Extend to other fastening system components

• SSTAR:
 – Perform image analysis to characterize the effect of exposed coarse aggregate in abrasion resistance
 – Study the effect of air entrainment and quality of aggregates on abrasion resistance of rail seat
 – Optimize concrete mix design and surface treatments to mitigate abrasion

• Heavy haul railways that continue to build capacity by increasing axle loads should be aware of the potential of RSD
Acknowledgements

• Funding for this research has been provided by
 – Association of American Railroads Technology Scanning Program
 – NEXTRANS Region V Transportation Center
 – Eisenhower Graduate Fellowship
• For providing direction, advice, and resources:
 – Amsted Rail - Amsted RPS: Jose Mediavilla, Dave Bowman, Brent Wilson,
 – BNSF Railway: John Bosshart, Tom Brueske, Hank Lees
 – AREMA Committee 30: Winfred Boesterling, Pelle Duong, Kevin Hicks, Tim Johns,
 Steve Mattson, Jim Parsley, Michael Steidl, Fabian Weber, John Zeman
 – TTCI: Dave Davis, Richard Reiff
 – Pandrol Track Systems: Bob Coats, Scott Tripple
 – UIUC: Tim Prunkard, Mauricio Gutierrez, Don Marrow, Darold Marrow
• For assisting with the research and lab work:
 – Josh Brickman, Ryan Feeney, Kris Gustafson, Steven Jastrzebski, Andrew
 Kimmle, Calvin Nutt, Chris Rapp, Amogh Shurpali, Emily Van Dam, Michael Wnek
Questions

Amogh A. Shurpali
Graduate Research Assistant
Rail Transportation and Engineering Center - RailTEC
email: ashurpa2@illinois.edu

Ryan Kernes
Research Engineer
Rail Transportation and Engineering Center - RailTEC
email: rkernes2@illinois.edu