Mechanics of Insulator Behavior in Concrete Crosstie Fastening Systems

Joint Rail Conference
Knoxville, TN
16 April 2013
Brent Williams, Riley Edwards, Ryan Kernes
Outline

- Current insulator performance
- Objectives of research
- Analysis of failure modes and causes
- Relevant material properties related to failure modes
- Preliminary testing and results
- Future work
Current insulator performance

- 25 million concrete crossties in North America
- Insulator performance is not consistently meeting expectations
 - Desired life cycle of insulator is life of rail
- Failures seen predominantly in curves
- Increase life cycle by mitigating causes of failure
Objectives of research

• Understand the behavior of the insulator under loading conditions and environments associated with failure
 – Forces in the insulator
 – Deformation and relative slip

• Investigate innovative materials and their properties

• Find optimized designs and materials that ultimately lead to a longer service life
General assembly

- Rail
- Field
- Gauge
- Insulator
- Clip
- Shoulder
- Rail pad assembly
- Concrete crosstie
Insulator orientation

- Clip bearing area
- Post
Shoulder orientation

Clip retention area

Shoulder face
Functions of an insulator

- Establish and maintain gauge
- Protect shoulder and attenuate load entering shoulder
- Provide electrical isolation between metallic surfaces
- Transfer clamping force from clip to rail

Gauge = 56.5 inches
Analysis of failure modes and causes

• Failure Mode and Effect Analysis (FMEA) used to define and identify causes and effects of failure

• Failure results in wide gauge, shunt in track circuit, excessive rail movement, expedited wear of other components

• Potential failure mechanisms:
 – Abrasion
 – Bending or deformation
 – Crushing

Optimized material properties can help mitigate these failure mechanisms
Insulator failure mechanisms - abrasion

- Important material properties
 - Shear strength
 - Abrasion resistance
Insulator failure mechanisms - bending or deformation

- Important material properties
 - Flexural strength
 - Cold temperature impact
Insulator failure mechanisms - crushing

- Important material properties
 - Compressive and tensile strength
Design and performance considerations

- Environmental conditions affecting component material properties
 - Temperature
 - UV light
 - Presence of moisture
 - Nylon has a propensity to absorb moisture
- Continuous loading
 - Fatigue characteristics from passing trains
 - Creep characteristics from seating loads
- Changes in properties between manufacture and field
Quantifying insulator demands

- Quantifying force transmitted through insulator post is paramount to understanding behavior or component
 - Lateral load measurement through post
 - Compressive force
- Deformation and relative slip of insulator is also key
 - Longitudinal translation
 - Vertical post movement relative to rail and shoulder
Past work – BNSF lateral load measurement

- Instrumented field and gauge side insulator post
- Measured compressive force in post on 7-10° curve
- Key findings
 - 8-10 kip lateral force needed to transfer load to adjacent ties
 - 10 kip force imparted into system due to thermal expansion of rail
 - Instrumentation failed under such high loads
Quantifying lateral load entering shoulder face

- Instrumented shoulder face insert
 - Original shoulder face is removed
 - Insert designed as a beam and optimized to replace removed section
 - Measures bending strain of beam under 4-point bending
- Measuring bending strain is a proven technique
Laboratory proof of concept

- Instrumented shoulder face insert tested on Pulsating Load Testing Machine (PLTM) at UIUC
- Varied lateral load from 1,800 to 18,000 lbf
- Varied L/V ratio from 0.1 to 0.5
- Tested dynamic loading at 3 Hz
- Representative loading conditions
 - Sharp curvature
 - Demanding conditions
Transfer of lateral load to shoulder face

32.5 kip vertical load, 0.5 L/V ratio

Compressive stress = ~9,000 psi
Transferred load through shoulder
Preliminary conclusions from testing

- Percentage of lateral load transferred through post increases as L/V ratio increases
- Lateral loads are resisted by friction at low L/V ratios
- Lower coefficients of friction between concrete tie and rail pad result in increased lateral load through post
- Reliable results can be achieved with instrumented shoulder face insert in laboratory
- Successful laboratory testing results make it a viable way to measure lateral load in the field
Future work

• Laboratory testing of lateral load measurement systems
• Laboratory testing to determine failure thresholds
• Field validation testing with lateral load measurement systems at Transportation Technology Center (TTC)
• Compare field data with lab and model data
• Measurement of lateral load on in-service track
• Determine correlations between fastening system component behavior and various material properties
• Propose optimized component materials and design
Acknowledgements

• Funding for this research provided by
 – Association of American Railroads (AAR) Technology Scanning Program
 – Federal Railroad Administration (FRA)
• For providing direction, advice, and resources:
 – BNSF Railway: John Bosshart
 – H2 Visions: Harold Harrison
 – Pandrol Track Systems: Bob Coats
 – CSX Transportation: Jim Beyerl
 – Amsted Rail – Amsted RPS: Jose Mediavilla
 – UIUC: Tim Prunkard, Darold Marrow, Don Marrow
 – Instrumentation Services, Inc.: Don Rhodes, Bill Rhodes
• For assisting with research and lab work:
 – Chris Rapp, Thiago Bizarria, Justin Grasse, Sihang Wei
Questions

Brent Williams
Graduate Research Assistant
Railroad Transportation and Engineering Center – RailTEC
email: bwillms3@illinois.edu
Office: (217) 244-6063