Using Wheel Impact Load Detector Data to Understand Wheel Loading Environment

Transportation Research Board 93rd Annual Meeting
Washington, D.C.
14 January 2014

Brandon J. Van Dyk, Marcus S. Dersch, J. Riley Edwards, Conrad Ruppert, Jr., and Christopher P.L. Barkan
Outline

• Objectives of quantifying load amplification
• Wheel load distribution on shared infrastructure
 – Causes of load amplification
• Identification of load amplification factors
 – Dynamic wheel load factors
 – Impact factors
• Wheel loads on curved track
• Conclusions and Acknowledgements
Objectives

• Use wheel impact load detector data to understand wheel loading environment, leading to improved design of track structure that reflects actual loading demands

• Characterize and quantify increase above static wheel load due to several factors
 – Temperature
 – Speed
 – Irregularities

• Identify dynamic and impact wheel load factors

• Summarize alternative data collection methods
Wheel Impact Load Detectors (WILD)

- Sixteen sets of strain gauges to detect full rotation of most wheels
- For each wheel,
 - Labels by vehicle type
 - Measures speed, nominal (static) wheel load, and peak wheel load
WILD Data Provided by Amtrak and UP
Traffic Distribution – Nominal Wheel Loads

Source: Amtrak – Edgewood, MD (November 2010)

10 kips ≈ 45 kN
Using WILD Data to Understand Wheel Loading Environment

Traffic Distribution – Peak Wheel Loads

- Freight Locomotives
- Intermodal Freight Cars
- Passenger Coaches
- Passenger Locomotives
- Other Freight Cars

Source: Amtrak – Edgewood, MD (November 2010)

10 kips ≈ 45 kN
Nominal vs. Peak Vertical Load

Source: Amtrak – Edgewood, MD (November 2010)

10 kips ≈ 45 kN
Effect of Traffic Type on Peak Wheel Load

- **Freight Cars**
- **Passenger Coaches**

- **UNLOADED FREIGHT CARS**
- **LOADED FREIGHT CARS**
- **PASSENGER COACHES**

Source: Amtrak – Edgewood, MD (November 2010)

10 kips ≈ 45 kN
Seasonal Variation of Freight Wheel Loads

Source: Union Pacific – Gothenburg, NE (2010)

10 kips ≈ 45 kN
Seasonal Variation of Highest Freight Wheel Loads

Source: Union Pacific – Gothenburg, NE (2010)
Dynamic vs. Impact Load

• Static load – load of vehicle at rest
• Quasi-static load – static load at speed, independent of time
• Dynamic load – high-frequency effects of wheel/rail interaction, dependent on time
 – E.g., \(\text{Dynamic Factor} = 1 + \frac{33 \text{(speed (mph))}}{100 \text{(diameter (in.))}} \)
• Impact load – high-frequency and short duration load caused by track and vehicle irregularities
 – E.g., increase of 200% (found in AREMA Chapter 30)
Effect of Speed on Wheel Load

Source: Amtrak – Edgewood, MD (November 2010)

10 kips ≈ 45 kN, 10 mph ≈ 16 kph
Comparison of Dynamic Wheel Load Factors

- Talbot
- Indian Railways
- Eisenmann
- ORE/Birmann
- German Railways
- South African Railways
- Clarke
- WMATA
- Sadeghi
- AREMA C30

Dynamic Factor, ϕ

Speed (mph)

10 mph \approx 16 kph
Dynamic Wheel Load Factors

Impact Factor vs Speed (mph)

- Talbot
- Indian Railways
- Eisenmann
- ORE/Birmann
- German
- South African Railways
- Clarke
- WMATA
- Sadeghi
- AREMA C30

Source: Amtrak – Edgewood, MD (November 2010)

10 mph ≈ 16 kph
Using WILD Data to Understand Wheel Loading Environment

Other Effects on Peak Wheel Load

Source: Amtrak – Mansfield, MA (November 2010)
More than a Dynamic Factor: Impact Factor

Impact Factor (IF) = \frac{\text{Peak Load}}{\text{Static Load}}

Source: UPRR – Gothenburg, NE (January 2010)

10 kips ≈ 45 kN
Thoughts on Impact Factor

• AREMA Chapter 30 Impact Factor (300%) exceeds majority of locomotive and loaded freight car loads
 – Greater impact factor may be necessary for lighter rolling stock (passenger coaches and unloaded freight cars)
 – Wheel condition significantly affects load
 – Speed causes highest impacts to be higher

• Evaluating effectiveness of impact factor dependent on static weight of car
Other Factors Affecting Wheel Loads

- Moisture and temperature
- Position within the train
- Curvature
- Grade
- Track quality

UIUC Instrumentation Plan

Need alternative data collection methods

Instrumented Wheel Set

Truck Performance Detector
Alternative Data Collection Methods

- Instrumented Wheel Set
 - Vehicle-mounted; collects data at 300 Hz
 - Measures vertical and lateral loads in tangent, curved, and graded sections
- Truck Performance Detector
 - Wayside detector in tangent and curved sections
 - Measures vertical and lateral loads of each wheel
- UIUC Instrumentation Plan (thus far implemented at TTC)
 - Instrumented track in tangent and curved sections
 - Continuously measures each wheel in multiple locations for vertical load, lateral load, and various deflections
IWS: Wheel Loads on Left-Handed Curve

Source: AAR (2006)
Lateral Loads within Left-Handed Curve

Source: AAR (2006)

10 kips ≈ 45 kN, 0.1 in = 2.54 mm
Conclusions

• Wheel impact load detectors can be used to characterize the loading environment, leading to improved track design.

• Colder temperatures do not increase the majority of the wheel loads; winter conditions do increase highest impact loads.

• Dynamic and impact wheel load factors can be compared and objectively evaluated, resulting in improved decision-making in design.

• The use of technology typically reserved for monitoring mechanical health can also provide increased insight into track design and maintenance.
Acknowledgements

U.S. Department of Transportation

Federal Railroad Administration

• Funding for this research has been provided by the Federal Railroad Administration (FRA)
• Industry Partnership and support has been provided by
 – Union Pacific Railroad
 – BNSF Railway
 – National Railway Passenger Corporation (Amtrak)
 – Amsted RPS / Amsted Rail, Inc.
 – GIC Ingeniería y Construcción
 – Hanson Professional Services, Inc.
 – CXT Concrete Ties, Inc., LB Foster Company
 – TTX Company
• For assistance in data acquisition
 – Steve Crismer, Jonathan Wnek (Amtrak)
 – Steve Ashmore, Bill GeMeiner, Michael Pfeifer (Union Pacific)
 – Teever Handal, (PRT), Kevin Koch (TTCI), Jon Jeambey (TTX)
• For assistance in data processing and interpretation
 – Alex Schwarz, Andrew Stirk, Anusha Suryanarayanan (UIUC)

FRA Tie and Fastener BAA
Industry Partners:
Questions

Brandon Van Dyk
Technical Engineer
Vossloh Fastening Systems America
e-mail: brandon.vandyk@vossloh-usa.com

J. Riley Edwards
Senior Lecturer and Research Scientist
Rail Transportation and Engineering Center – RailTEC
University of Illinois at Urbana-Champaign
e-mail: jedward2@Illinois.edu